
February 23, 2004NFS Connectathon 2004 Slide 1

Tom Talpey

Network Appliance, Inc.

tmt@netapp.com

NFS/RDMA Linux Client

February 23, 2004NFS Connectathon 2004 Slide 2

Outline

• NFS/RDMA Protocol(s)
• Implementation on Linux
• Results
• Next steps

February 23, 2004NFS Connectathon 2004 Slide 3

What is NFS/RDMA

• A binding of NFS v2, v3, v4 atop
RDMA transport such as Infiniband,
iWARP

• A significant performance optimization
• An enabler for NAS in the high-end

February 23, 2004NFS Connectathon 2004 Slide 4

Benefits of RDMA

• Reduced Client Overhead
• Data copy avoidance (zero-copy)
• Userspace I/O (OS Bypass)
• Reduced latency
• Increased throughput, ops/sec

February 23, 2004NFS Connectathon 2004 Slide 5

Followon NFS/RDMA Benefits

• Protocol enhancements and extensions
– Databases, cluster computing, etc

• Scalable cluster/distributed filesystem
• As we raise the “NAS bar”, the protocol

should express richer semantics

February 23, 2004NFS Connectathon 2004 Slide 6

What has been proposed

• IETF NFSv4 Working Group
• From the bottom up:

– RPC/RDMA
– NFS RDMA binding
– NFSv4 Transport enhancements

• Sessions
• Exactly-once semantics

February 23, 2004NFS Connectathon 2004 Slide 7

NFS-RDMA
Protocol Stack

NFSv3 NFSv4 NFSv4.1
(Sessions)

RPC-TCP RPC-UDP RPC-RDMA ...

RPC

February 23, 2004NFS Connectathon 2004 Slide 8

RPC/RDMA

• Core RDMA transport binding for RPC
in general

• Provides
– Encoding, etc
– Inline and Direct (RDMA chunk) transfer
– Credits

• http://www.ietf.org/internet-drafts/draft-
callaghan-rpcrdma-00.txt

February 23, 2004NFS Connectathon 2004 Slide 9

NFS Direct

• NFS binding for RPC/RDMA
• Provides

– Inline and Direct (RDMA) NFS RPC
definitions

– “What gets chunked”
• http://www.ietf.org/internet-drafts/draft-

callaghan-nfsdirect-00.txt

February 23, 2004NFS Connectathon 2004 Slide 10

NFSv4 RDMA and Sessions

• Transport Enhancement for NFSv4
• Provides

– Session concept
– Exactly-once semantics
– General for TCP and RDMA

• http://www.ietf.org/internet-drafts/draft-
talpey-nfsv4-rdma-sess-01.txt

February 23, 2004NFS Connectathon 2004 Slide 11

NFS RDMA Problem Statement

• IETF Problem Statement for NFS over
RDMA

• Provides
– Rationale
– Outlines requirements
– IETF-chartered first step

• http://www.ietf.org/internet-drafts/draft-ietf-
nfsv4-nfs-rdma-problem-statement-00.txt

February 23, 2004NFS Connectathon 2004 Slide 12

NFS RDMA Requirements

• IETF Requirements doc for NFS over
RDMA

• Provides
– Detailed requirements
– Input to RDDP group
– IETF-chartered first step

• http://www.ietf.org/internet-drafts/draft-
callaghan-nfsrdmareq-00.txt

February 23, 2004NFS Connectathon 2004 Slide 13

The Documents Together:

• Form the basis for a complete NFS over
RDMA solution

• All NFS versions, and general RPC
• Do not fundamentally propose new

NFS features (but enable a few)

February 23, 2004NFS Connectathon 2004 Slide 14

Applying to NFSv3

• Immediate performance benefit
• Straightforward integration with

existing implementation
• High market acceptance
• “NFS on Steroids”
• Side protocols (NLM) problematic

February 23, 2004NFS Connectathon 2004 Slide 15

Applying to NFSv4+
• Performance
• Enhanced correctness

– “The goodness of NFSv4”
– Exactly-once semantics (“EOS”)
– No side protocols / side connections

• Sessions
– Trunking
– Failover
– Efficient resource management
– (Other benefits from EOS)
– For both TCP and RDMA

February 23, 2004NFS Connectathon 2004 Slide 16

Roadmap

• Early win: NFSv3 on IB
• Prepare the Transport: NFSv4 Sessions
• Enable the applications by extending

the protocol
• Employ (and foster) iWARP
• NFSv4/RDMA as cluster FS

February 23, 2004NFS Connectathon 2004 Slide 17

Client Implementation Goals

• Support NFS/RDMA
• Support other transports:

– TOE
– IPv6
– “Bypass” (pNFS)

• Integrate with Linux

February 23, 2004NFS Connectathon 2004 Slide 18

Existing Linux RPC support

• Single module – sunrpc.o
• Only IPPROTO_{TCP,UDP}
• Only kernel sockets API
• Much specific knowledge roto-tilled:

– Stream/dgram (framing needed)
– Connection oriented (reconnect needed)
– Reliable (retransmit needed)

• Endpoint is 1-1 per xprt (mount)

February 23, 2004NFS Connectathon 2004 Slide 19

Solution: RPC Transport Switch

• Abstraction for transport type
• One each for

– TCP
– UDP
– RDMA
– More to come

February 23, 2004NFS Connectathon 2004 Slide 20

NFS-RDMA
Client Software Stack

Ethernet

Kernel sockets

RPC-TCP

Ethernet

Kernel sockets

RPC-UDP

iWARP IB

kDAPL

RPC-RDMA

...

...

...

Linux RPC
Transport Switch

NFS version 3
(Unmodified Linux VFS)

February 23, 2004NFS Connectathon 2004 Slide 21

Transport Switch Vector
New pointer in the “struct rpc_xprt”:

/* abstract functions provided by a transport */
struct rpc_xprt_procs {

void * (*allocate)(struct rpc_xprt *, struct rpc_task *, unsigned int);
int (*sendmsg)(struct rpc_xprt *, struct rpc_rqst *);
void (*free)(struct rpc_xprt *, struct rpc_task *, void *);
void (*reconnect)(struct rpc_task *);
int (*create)(struct rpc_xprt *, struct xprt_create_data *);
int (*destroy)(struct rpc_xprt *);
void (*close)(struct rpc_xprt *);

};

February 23, 2004NFS Connectathon 2004 Slide 22

Socket Transport Creation

#define RPC_MAX_TRANSPORTS 16
#define RPC_XPRT_TCP 0 /* sock_create_data */
#define RPC_XPRT_UDP 1 /* sock_create_data */
#define RPC_XPRT_RDMA 2 /* rdma_create_data */

struct sock_create_data {
struct sockaddr_in srvaddr;
struct rpc_timeout * timeo;

};

February 23, 2004NFS Connectathon 2004 Slide 23

RDMA Transport Creation
struct rdma_create_data {

/* Generic fields */
struct sockaddr_in srvaddr;
struct rpc_timeout * timeo;

/* Server RDMA address and port */
struct sockaddr addr;
u64 port;

/* Per-mount tuning */
int max_requests; /* max credits/requests in flight */
int rsize; /* server r/w sizes (mount opts) */
int wsize;

/* Per-server configuration - must be <= remote settings */
int max_inline_send; /* Inline data max */
int max_inline_recv; /* Inline data max */
int padding; /* Inline write pad */

};

February 23, 2004NFS Connectathon 2004 Slide 24

Transport Switch Registry
/*
* rpc_transport represents a transport for use by RPC.
* This is provided by each transport.
*/
struct rpc_transport {

char name[8];
int transport_number;
struct rpc_xprt_procs procs;

};
int xprt_register(struct rpc_transport *);
int xprt_unregister(struct rpc_transport *);
/* Alternative for xprt_create_proto that is transport-switch aware. */
struct rpc_xprt *xprt_create_transport(struct xprt_create_data *);

February 23, 2004NFS Connectathon 2004 Slide 25

Transport Hooks

• Each transport registers with switch
• NFS mount (and others) specify transport

type and per-transport create data
• Transport gets control via xprt_procs
• Can unregister/unload

February 23, 2004NFS Connectathon 2004 Slide 26

Lifecycle of an RPC

RPC Free

NFS completion

RPC Demux (soft ISR)

Server processing

RPC sendmsg
(Includes transport header marshalling)

NFS marshalling

RPC Transport allocation

NFS VFS processing

New switch
abstractions

February 23, 2004NFS Connectathon 2004 Slide 27

Memory Representation

• Leverage Linux implementation heavily
• Use allocation hook to set up preregistered

request/reply buffers (headers)
• Use iovec (<= 2.4.19) or pagelist (>=

2.4.20) to map any data

February 23, 2004NFS Connectathon 2004 Slide 28

Memory Representation

• Header segment always copied to inline
– All metadata ops, small reads/writes “pulled up”

• Data segments translated directly to rpcrdma “chunks”
• No need for NFS layer to become involved

<=2.4.19: IOV
(header)

IOV
(data)

>=2.4.20: IOV
(header)

Page
(data)

Page
(data)

IOV
(tail)

…

February 23, 2004NFS Connectathon 2004 Slide 29

Transfer models

• Follow the RPC/RDMA protocol
• Full inline (no chunking)
• Direct read, write (via write/read chunks,

respectively)
• “Overflow transfer” via reply chunks or

position-0 requests
• Write padding supported

February 23, 2004NFS Connectathon 2004 Slide 30

Inline I/O Operations
• “Small ops”: metadata and inline Read and Write

− Just like regular RPC

− Pre-allocated buffers, pre-registered with the transport
− Configurable message size limit
− Low transport latency, simple model
− Header padding for write data alignment

ServerClient Request
Response

February 23, 2004NFS Connectathon 2004 Slide 31

Direct I/O Operations

• Direct Read and Write
− 3-part transfer

− Server initiates RDMA operation
− Buffer placed per request
− Used for large messages
− Zero-copy, low CPU cost

ServerClient

Request

Response
RDMA

February 23, 2004NFS Connectathon 2004 Slide 32

Overflow Direct Operations

• Large metadata transfers
− 3-part transfer

− Client expresses entire request or reply as chunk
− Server performs RDMA operation
− Used when request or response size > max

− e.g. rename, readlink, readdir
− Provides correctness for corner cases

− Not on read/write path

ServerClient

Request

Response
RDMA

February 23, 2004NFS Connectathon 2004 Slide 33

Buffer Cache

• Operation to Linux buffer cache fully
supported

• RDMA to/from cache, bcopy to/from user
• Improved overhead from sockets case

– Protocol offload, copy avoidance

• Convenient because buffer cache is in
kernel address space

February 23, 2004NFS Connectathon 2004 Slide 34

Direct I/O

• User directio fully supported in appropriate
kernels (>= 2.4.19)

• User pages passed as pagelist by NFS
• Pages are registered for RDMA
• Zero-copy, zero-touch
• When physical addressing in use, no

kmap/kunmap is required (no TLB inval)

February 23, 2004NFS Connectathon 2004 Slide 35

Client Implementation

• Patch for sunrpc (transport switch)
• RPC/RDMA module

– 3000 lines of code, 2 headers, 3 C files

• kDAPL “null” provider
• IB kDAPL providers under way

February 23, 2004NFS Connectathon 2004 Slide 36

Client Implementation

• Available as open source
– BSD-style license
– www.sourceforge.net/projects/nfs-rdma

• Supported Linuxes:
– RedHat 7.3 (2.4.18)
– SuSE 8 Enterprise (2.4.19)
– RHEL 3.0 (2.4.21)
– 2.6 support under way

February 23, 2004NFS Connectathon 2004 Slide 37

kDAPL

• Kernel Direct Access Programming Library
• Transport API for RDMA

– Implemented as part of each driver, with global
registry

• Supports iWARP, Infiniband, VIA
• Open reference implementation
• www.datcollaborative.org
• www.sourceforge.net/projects/dapl

February 23, 2004NFS Connectathon 2004 Slide 38

Performance

1. Streaming throughput
2. Transactional throughput
3. Seat-of-pants
• Tests run on Dell 2650

– SuSE Linux Enterprise Server 8 (~2.4.19)
– 4x Infiniband connection (10Gb)
– 2.4GHz dual Xeon
– Hyperthreading disabled
– NetApp 960 Filer(s)

February 23, 2004NFS Connectathon 2004 Slide 39

Streaming Throughput

• 4K synchronous random reads from server
cache
– i.e. single thread, no caching, no readahead.

• Achieves ~350MBytes/sec
– This includes one data copy from kernel->user!

• Uses only 20% of client CPU
• RDMA, low latency, protocol offload all

contribute

February 23, 2004NFS Connectathon 2004 Slide 40

Transactional Throughput
• OLTP benchmark (4-way CPU)
• Compared to 1Gb NFS/TCP, 2Gb Fibre Channel

– These runs are not bandwidth limited

• NFS runs encounter 1 data copy (database !O_DIRECT)

Idle time21%17KNFS/TCP

Host CPU
(data copy)

26%20KRDMA

Host CPU20%21KFibre

LimitSystem
time

OLTP ops

February 23, 2004NFS Connectathon 2004 Slide 41

Seat-of-pants

• Build the Linux kernel
• NFS runs encounter significant creat/open/close attribute

traffic – expect much better w/v4

4:10RDMA

6:10NFS/TCP

3:05Local disk

Build time

February 23, 2004NFS Connectathon 2004 Slide 42

Next Steps

• Transport switch
– Clean up, generalize
– Integrate with 2.6.x
– Expose transport creation args via mount

February 23, 2004NFS Connectathon 2004 Slide 43

Next Steps

• Linux Infiniband support
• For base kernel, also in distributions

– Infiniband vendors

• With kDAPL support

February 23, 2004NFS Connectathon 2004 Slide 44

Next Steps

• NFSv4/RDMA/Sessions
• UMich CITI
• http://www.citi.umich.edu/projects/rdma/

February 23, 2004NFS Connectathon 2004 Slide 45

Next Steps

• NFS/RDMA Linux Server
• (TBD)

February 23, 2004NFS Connectathon 2004 Slide 46

Next Steps

• Other applications of transport switch
– TOE

• Non kernel-sockets TOE API may add efficiency

– IPv6
• Better express addressing, transport differences

– pNFS (parallel NFS)
• Fibre Channel / iSCSI “bypass”

– Multiple TCP endpoints
• Simple trunked/failover mountpoints

February 23, 2004NFS Connectathon 2004 Slide 47

Next Steps

• iWARP support
• Emerging technology in 2004

February 23, 2004NFS Connectathon 2004 Slide 48

Backup – NFSv4/Sessions

February 23, 2004NFS Connectathon 2004 Slide 49

The Proposal

• Add a session to NFSv4
• Enable operation on single connection

– Firewall-friendly
• Enable multiple connections for trunking,

multipathing
• Enable RDMA accounting (credits, etc)
• Provide Exactly-Once semantics
• Transport-independent

February 23, 2004NFS Connectathon 2004 Slide 50

5 new ops

• SESSION_CREATE
• SESSION_BIND
• SESSION_DESTROY
• OPERATION_CONTROL
• CB_CREDITRECALL

February 23, 2004NFS Connectathon 2004 Slide 51

Channels versus Connections

• Channel: a connection bound to a specific
purpose:

– Operations (1 or more connections)
– Callbacks (typically 1 connection)

• Multiple connections per client, multiple
channels per connection

– Many-to-many relationship

• All operations require a streamid/channelid
– Encoded into COMPOUND

February 23, 2004NFS Connectathon 2004 Slide 52

Session Connection Model

• Client connects to server
• First time only:

– New session via SESSION_CREATE
• Initialize channel:

– Bind “channel” via SESSION_BIND
– May bind operations, callback to same connection
– May connect additional times

• Trunking, multipathing, failover, etc.

• CCM fits perfectly here
• If connection lost, may reconnect to existing session
• When done:

– Destroy session context via SESSION_DESTROY

February 23, 2004NFS Connectathon 2004 Slide 53

Example Session – single connection
Server

(NFSv4.1 clientid)

Client

Session

Session

Connection

Connection

Operations
channel

Callback
channel

February 23, 2004NFS Connectathon 2004 Slide 54

Example Session – multiple connections

Server

Client

Session

Session

Connection

Operations
channel Callback

channel

Connection Connection

Connection Connection Connection

Operations
channel

February 23, 2004NFS Connectathon 2004 Slide 55

Example Session – single
connection

• Resource-friendly
• Firewall-friendly
• No performance impact
• Isn’t this the way callbacks should have

been spec’ed?

February 23, 2004NFS Connectathon 2004 Slide 56

Exactly-Once Semantics

• Highly desirable, but never achievable
• Need flow control (N) , operation sizing (M)

in order to support RDMA
• Flow control provides an “ack window”

– Use this to retire response cache entries
• N * M = response cache size
• Session provides accounting and storage
• Done!

February 23, 2004NFS Connectathon 2004 Slide 57

Streamid

• A per-operation identifier in the range 0..N-
1 of server’s current flow control
– In effect, an index into an array of legal in-

progress ops

• Highly efficient processing – no lookup
• Used in conjunction with RPC transaction

id to maintain duplicate request cache

February 23, 2004NFS Connectathon 2004 Slide 58

Chaining

• Problem: COMPOUND restricted in length
at session negotiation

• Chaining provides strict sequencing of
requests
– “compound for compounds”

• Start, middle, end flags (and none)
• Maintains current and saved filehandles like

COMPOUND

February 23, 2004NFS Connectathon 2004 Slide 59

Connection model and negotiation
• Simplest form – no session at all
• Session binding enables use of RDMA

– Per-channel (connection) RDMA mode
– Mix TCP and RDMA channels per-client!

• TCP mode if either RDMA mode is off
• Dynamic enabling of RDMA at session binding

– After RDMA mode, sizes, credits, etc exchanged

• Statically enabled RDMA (e.g. Infiniband) also
supported

– Requires preposted buffer

February 23, 2004NFS Connectathon 2004 Slide 60

V4 Protocol integration

• Piggyback on existing COMPOUND
• New OPERATION_CONTROL first in each

session COMPOUND request and reply
• Conveys channelid, streamid, and chaining

Tag Minor
(==1)

numops Operation_Control Operations…

February 23, 2004NFS Connectathon 2004 Slide 61

V4 efficiencies

• No need for sequenceid
– Field will stay, but ignored under a session

• No need for clientid per-op
– Clientid may be provided as zero

• Each request within session renews leases
• OPEN_CONFIRM not needed
• CCM is enabled

