

CITI Technical Report 06-06

pNFS and Linux:
Working Towards a Heterogeneous Future

Dean Hildebrand Peter Honeyman

 dhildebz@umich.edu honey@umich.edu

ABSTRACT

Anticipating terascale and petascale HPC demands, NFSv4 architects are designing
pNFS, a standard extension that provides direct storage access to high-performance
file systems while preserving operating system and hardware platform independence.
Researchers at the University of Michigan are collaborating with industry to develop
pNFS for the Linux operating system. This paper discusses the progress and direction
of Linux pNFS.

May 10, 2006

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

 101

pNFS and Linux: Working Towards a Heterogeneous Future

Dean Hildebrand
Center for Information Technology Integration

University of Michigan
dhildebz@eecs.umich.edu

Peter Honeyman
Center for Information Technology Integration

University of Michigan
honey@citi.umich.edu

Abstract

Anticipating terascale and petascale HPC demands,
NFSv4 architects are designing pNFS, a standard
extension that provides direct storage access to high-
performance file systems while preserving operating
system and hardware platform independence.
Researchers at the University of Michigan are
collaborating with industry to develop pNFS for the Linux
operating system. This paper discusses the progress and
direction of Linux pNFS.

1. Introduction

Large research collaborations require global access to
massive data stores. Parallel file systems feature
impressive throughput, but sacrifice heterogeneous
access, seamless integration, security, and cross-site
performance. pNFS, an integral part of NFSv4.1,
overcomes these enterprise and grand challenge-scale
obstacles by enabling clients to access storage directly
while preserving NFSv4 operating system and hardware
platform independence. pNFS distributes I/O across the
bisectional bandwidth of the storage network between
clients and storage devices, removing the single server
bottleneck so vexing to client/server-based systems. In
combination, the elimination of the single server
bottleneck and the ability for clients to access data
directly from storage results in superior file access
performance and scalability [1].

At the Center for Information Technology Integration
at the University of Michigan, we are developing pNFS
for the Linux operating system. A pluggable client
architecture harnesses the potential of pNFS as a
universal and scalable metadata protocol by enabling
dynamic support for file layout format, storage protocol,
and file system policies. In conjunction with several
industry partners, a prototype is under development for
support of file, block, object, and PVFS2 access methods.
This paper discusses the progress and direction of Linux
pNFS.

2. pNFS overview

pNFS is a heterogeneous metadata protocol. The
NFSv4.1 client and server perform control and file
management operations and delegate the responsibility
for I/O to a storage-specific driver. By separating control
and data flows, pNFS allows data to transfer in parallel
from many clients to many storage endpoints.
Distributing I/O across the bisectional bandwidth of the
storage network between clients and storage devices
removes the single server bottleneck.

Figure 1 displays the general pNFS architecture. The
control path contains all NFSv4.1 operations and features.

The data path can support any storage protocol, but the
IETF design effort focuses on file, object, and block
storage protocols. Storage devices can be NFSv4.1
servers, other distributed file systems, object storage,
even block-addressable disks. NFSv4.1 does not specify
a management protocol, which may therefore be
proprietary to the exported file system.

Clients perform direct and parallel I/O by first
requesting data location (layout) information from the
pNFS server. Clients then use the layout information in
conjunction with the storage protocol to access data. For
example, the NFSv4.1 file storage protocol stripes files
across NFSv4.1 data servers (storage devices); only
READ, WRITE, and COMMIT operations are used on
the data path.

3. Pluggable storage protocol

Although parallel file systems separate control and
data flows, there is tight integration of their control and
data protocols. Users must adapt to different consistency
and security semantics for each data repository. Using
pNFS as a universal metadata protocol lets applications
realize a consistent set of file system semantics across
data repositories. Linux pNFS facilitates interoperability
by providing a framework for the co-existence of the
NFSv4.1 control protocol with all storage protocols. This
is a major departure from current file systems, which can

 102

Figure 1. pNFS architecture
pNFS splits the NFSv4 protocol into a control
path and a data path. The NFSv4.1 protocol
exists along the control path. A storage
protocol along the data path provides direct and
parallel data access. A management protocol
binds metadata servers with storage devices.

Storage
Protocol

control

Storage
Nodes

Client

NFSv4.1 Client

Layout Driver

Transport Driver

I/O API Policy API

Server

Storage System

NFSv4.1 Server

Linux VFS API

Management
Protocol

Figure 2. Linux pNFS architecture

The NFSv4.1 (pNFS) client uses I/O and policy
interfaces to access storage nodes and follow
underlying file system polices. The NFSv4.1
server uses VFS export operations to exchange
pNFS information with the underlying file
system.

only support a single storage protocol such as FCP or
OSD [2, 3].

Figure 2 depicts the architecture of pNFS on Linux,
which adds a layout and transport driver to the standard
NFSv4 architecture. The layout driver understands the
file layout of the storage system. A layout consists of all
information required to access any byte range of a file.
The layout driver uses the layout to translate read and
write requests from the pNFS client into I/O requests
understood by the storage devices. The transport driver
performs I/O—e.g., iSCSI [4], Portals [5], SunRPC [6]—
to the storage nodes.

Layout drivers are pluggable, using a standard set of
interfaces for all storage protocols. An I/O interface
facilitates the management of layout information and
performing I/O with storage. A policy interface informs
the pNFS client of file system and storage system specific
policies. Example policies include the file system stripe
and block size and when to retrieve layout information.
An additional policy sets an I/O request size threshold
that improves performance under certain workloads [7].

The policy interface also enables layout drivers to
specify if it will use NFSv4.1 data management services
or use customized implementations. The following is a
list of services available to layout drivers:
• Data cache
• Writeback cache with write gathering
• Readahead and read gathering algorithms

These policies can be set for each layout driver or
acquired via the NFS server.

4. Evaluation

Our initial experiments evaluate different ways of
accessing storage. We use our pNFS prototype with a
PVFS2 file system and a PVFS2 layout driver. Native
PVFS2 clients lack a data cache, providing high
bandwidth data transfers with minimal overhead. With
pNFS and the layout driver policy interface, the PVFS2
layout driver has the option of using the Linux (NFSv4.1)
page cache. The flexibility of the policy interface
facilitates fine-grained performance analysis of the data
cache and NFSv4.1 I/O request processing. We plan
further experiments that evaluate cross-file system
transfer performance using different types of layout
drivers on a single client.

The current Linux pNFS client prototype can access
data through the Linux page cache, using O_DIRECT, or
directly by bypassing the Linux page cache and all
NFSv4 I/O request processing (direct access method).
When using the Linux page cache, I/O requests are
gathered or split into block sized requests before being
sent to storage, with requested data cached on the client.
Accessing data with O_DIRECT is similar, except data
does not pass through the Linux page cache. When
accessing data directly, I/O requests bypass the Linux
page cache and NFS subsystem and are given directly to
the layout driver. The first two data access methods are
currently supported by the Linux NFS implementation.
The direct method is the default behavior of some high-
performance file systems, e.g., PVFS2.

 103

 a. Write b. Read

Figure 3. Aggregate I/O throughput to six PVFS2 storage nodes using the pNFS direct, O_DIRECT,
and page cache access methods and the standard NFSv4 and NFSv4 with O_DIRECT access methods.

 a. Write b. Read

Figure 4. pNFS/PVFS2 aggregate I/O throughput to six PVFS2 storage nodes using the pNFS page
cache access method with four block sizes.

4.1. Main results

Our first set of experiments, shown in Figure 3,
demonstrates the relative performance of each of the
above pNFS access methods and standard NFSv4 with
and without O_DIRECT. Clients write and read separate
200 MB files in 4 MB chunks. With six data servers, the
available disk write bandwidth is 6 x 20 MB/s = 120
MB/s. The wsize and rsize is 4 MB for pNFS and 64
KB for NFSv4.

NFSv4 write performance is flat, obtaining an
aggregate throughput of 26 MB/s. NFSv4 with
O_DIRECT is also fat with a slight reduction in
performance. The direct access method has the greatest
aggregate write throughput, obtaining over 100 MB/s
with eight clients. The aggregate write throughput of

pNFS clients using the page cache is consistently 10
MB/s lower than pNFS clients using the direct method.
The PageCache 4KB access method, which writes data in
4 KB chunks, obtains the same performance as
PageCache demonstrating the Linux pNFS client’s ability
to gather small requests into larger and more efficient
requests. O_DIRECT obtains an aggregate write
throughput between the direct and page cache access
methods, but flattens out as the number of clients
increases. The relative performance of the O_DIRECT
and the page cache access methods is consistent with the
relative performance of NFSv4 and NFSv4 with
O_DIRECT.

NFSv4 read performance is flat, obtaining an
aggregate throughput of 52 MB/s. The aggregate read
throughput of pNFS clients using the two methods that
avoid the page cache is the same as we increase the

 104

number of clients, nearly exhausting the available
network bandwidth with ten clients. Working through the
page cache reduces the aggregate read throughput by up
to 110 MB/s.

Our second set of experiments sets out to verify the
performance sensitivity to layout driver block size (I/O
request size) when working through the Linux page
cache. As shown in Figure 4, increasing the block size
from 32 KB to 4 MB improves aggregate I/O throughput,
although this boost eventually hits a performance ceiling.

5. Future Directions

Petascale computing requires inter-site data transfers
involving clusters that may have different operating
systems and hardware platforms, incompatible or
proprietary file systems, or different storage and
performance parameters that require differing data
layouts. pNFS offers a solution.

Figure 5 shows two clusters separated by a long range,
high-speed WAN. Each cluster has the architecture
described in Figure 1 and can use a different storage
protocol as long as the pNFS client implements the
appropriate pluggable storage protocol. (The
management protocol is not shown.)

The application cluster is running an MPI application
that wants to read a large amount of data from the server
cluster and perhaps write to its backend. The MPI head
node obtains the data location from the server cluster and
distributes portions of the data location information (via
MPI) to other application cluster nodes, enabling direct
access to server cluster storage devices. The MPI
application then reads data in parallel from the server
cluster across the WAN, processes the data, and directs
output to the application cluster backend.

A natural use case for this architecture is a
visualization application processing the results of a
scientific MPI code run on the server cluster. Another use
case is an MPI application making a local copy of data
from the server cluster on the application cluster.

pNFS not only bridges the gap between proprietary
cluster file systems, it also opens cluster file systems to
data access from enterprise desktop distributed file
systems using common security, file naming, and file
ACLs as the basis for data management.

Acknowledgments

This work was partially supported by the NSF
Middleware Initiative Grant No. SCI-0438298, by ASC
under contract B523296, and by grants from Network
Appliance and IBM.

Figure 5. pNFS and inter-cluster data

transfers across the WAN
A pNFS cluster retrieves data from a remote
storage system, processes the data, and writes
to its local storage system. The MPI head node
distributes layout information to pNFS clients.

References

[1] D. Hildebrand and P. Honeyman, "Exporting
Storage Systems in a Scalable Manner with pNFS,"
in Proceedings of the 22nd IEEE - 13th NASA
Goddard Conference on Mass Storage Systems and
Technologies, Monterey, CA, 2005.

[2] Panasas Inc., "Panasas ActiveScale File System,"
www.panasas.com.

[3] EMC Celerra HighRoad Whitepaper,
www.emc.com, 2001.

[4] J. Satran, D. Smith, K. Meth, O. Biran, J. Hafner, C.
Sapuntzakis, M. Bakke, M. Wakeley, L. Dalle Ore,
P. Von Stamwitz, R. Haagens, M. Chadalapaka, E.
Zeidner, and Y. Klein, "iSCSI," Internet Draft,
draft-ietf-ips-iscsi-08.txt, 2001.

[5] R. Brightwell, A.B. Maccabe, R. Riesen, and T.
Hudson, "The Portals 3.3 Message Passing
Interface," 2003.

[6] R. Srinivasan, "RPC: Remote Procedure Call
Protocol Specification Version 2," RFC 1831, 1995.

[7] D. Hildebrand, L. Ward, and P. Honeyman, "Large
Files, Small Writes, and pNFS," to appear in the
Proceedings of the 20th ACM International
Conference on Supercomputing, Cairns, Australia,
2006.

